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Instability of solitons in an inhomogeneous array of optical fibers

I. Relke*
Institut für Festkörpertheorie und Theoretische Optik, Friedrich-Schiller Universita¨t Jena, Max-Wien-Platz 1, D-07743 Jena, German

~Received 8 August 1997!

The perturbation theory for an investigation of the stability of solitons in fiber array with a periodic change
of a coupling constant is developed. The linear stability analysis is performed in an approximation of weak
coupling within the framework of the system of dispersive discrete nonlinear Schro¨dinger equations. It is
shown that the propagation of a soliton array in such a continuous-discrete system is unstable. The maximum
of the growth rate of modulation instability is evaluated. Analyzing the mode structure of the corresponding
eigenvalue problem in the vicinity of the threshold of instability it is found that in the system under consid-
eration acoustical and optical unstable modes exist. Numerical calculations confirm the analytical results.
@S1063-651X~98!13705-4#

PACS number~s!: 42.81.Dp, 03.40.Kf, 42.81.Qb
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I. INTRODUCTION

Recently nonlinear fiber arrays and nonlinear wavegui
have attracted a lot of attention in optics due to their poss
applications in all-optical signal processing@1–5#. Moreover
they provide an excellent opportunity for theoretical inves
gation of the nonlinear behavior of the discrete system. A
other distinctive feature of these arrays is that they comb
the properties of both discrete and continuous systems.
description of the pulse propagation in such systems the n
linear discrete Schro¨dinger equation is usually used. Unfo
tunately this equation is not an integrable one, but it h
soliton solutions realizing local extremum of the Ham
tonian. Such steady state solutions, corresponding to sta
ary points of the Hamiltonian, play an important role in sy
tem evolution. In general, in the search for the station
localized solutions of nonlinear systems, inspection of th
stability with respect to small perturbations is one of t
fundamental problems of nonlinear physics. The detection
the soliton solutions, in turn, stimulates the developmen
powerful analytical and numerical methods through the
amination of their stability. For the last several years,
evolution of localized and continuous wave solutions in
dispersionless nonlinear discrete systems has been stu
intensively in many works~see, for example,@6–10#, and
references therein!. But especially great interest is arous
by the investigations of the stability of the solitary waves
so-called continuous-discrete nonlinear systems where
the temporal dispersion and the discreteness are taken
account@11–15#, because in this problem one may simult
neously investigate both the redistribution of the ene
among the fibers and the evolution of the shape of the lo
ized solution in each core. It was done in a pioneering w
@15# where the modulation instability of soliton solutions in
homogeneous nonlinear fiber array was studied and, in
ticular, the threshold of this instability was evaluated. Mo
recently, the stability of solitons, the phase of which rota
across homogeneous fiber array, was investigated in@16#.
The influence of the inhomogeneity of the coupling stren
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on evolution of the solitary waves in the dispersionless fi
array was considered in@17–19#.

In the present paper the stability of temporal solitons
studied in nonlinear fiber array including both dispersi
properties of cores and inhomogeneity of the coupl
strength. The change of the latter is caused by the perio
variation of linear coupling across the fiber array. The co
pling coefficient can be modified, for example, by alterati
of the separation between neighbor fibers. I examine in de
the array with an alternating variable part of the coupli
coefficient from fiber to fiber. In practical applications th
change of coupling coefficient can be done, for instance,
means of acoustical modulation of the distance between
bers.

The main objective of the present paper is a system
linear stability analysis of the soliton array propagating in
linearly inhomogeneous continuous-discrete system. I d
onstrate for the case of the set of two discrete dispers
nonlinear Schro¨dinger equations how weak coupling b
tween neighbor channels changes the stability of the sol
array. The approach presented here was applied be
mainly to continuum models~see, e.g.,@20#, and references
therein!. Unfortunately, as was specified by the authors
@20#, the linear stability analysis of solitons in continuou
media can be executed only in a limit of small spatial fr
quency. For the continuous-discrete model considered h
the situation sharply varies. Below it will be shown that t
analysis of stability of solitary wave solutions can be p
formed in an approximation of weak coupling with arbitra
spatial frequency of perturbations, that ensures the execu
of the complete linear stability analysis of the homogene
and inhomogeneous continuous-discrete systems within
framework of perturbation theory. Inspection of the eige
value problem in a perturbative manner allows one to obt
the spectrum of the soliton array perturbations. Analyz
the mode structure of the linearized system of differen
equations of the fourth order I find that in the system co
sidered two odd stable and two even slightly unstable mo
exist. Modes corresponding to even branches of the spec
will be termed optical and acoustical unstable modes. T
discovered optical unstable mode is responsible for the p
cess of modulation instability in the model of the solito
array under consideration.

i-
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II. PERTURBATION THEORY

The evolution of pulses in an inhomogeneous array
coupled optical fibers in the anomalous dispersion regim
described by the system of differential equations

i ]zCn1Cn11/2Cn111Cn21/2Cn211] ttCn1uCnu2Cn50,

n51,2, . . . ,N ~1!

whereCn11/2 is the strength of coupling between fibers nu
bern andn11, Cn is the complex amplitude in thenth core,
t is the normalized retarded time, andz is the normalized
propagation distance. In what follows I restrict myself to t
consideration of the periodic change of coupling strength
the form

Cn11/25 f 1D f cos~pn!, ~2!

where parametersf andD f mean constant and variable pa
of this coupling coefficient, respectively. Now making
transformation of variablesCn→Cnei (Cn11/21Cn21/2)z and
taking into account that the value of the coupling coefficie
varies only with an interchange of parity of the number
fibers I rewrite Eq.~1! introducing the change of variable
Cn5Un , for n52i andCn5Vn , for n52i 21,

i ]zUn1D f ~Vn112Vn21!1 f ~Vn111Vn2122Un!1] ttUn

1uUnu2Un50, ~3!

i ]zVn2D f ~Un112Un21!1 f ~Un11Un2122Vn!1] ttVn

1uVnu2Vn50. ~4!

This system of coupled equations is the Hamiltonian

H5(
n
E H f @ uUn2Vn21u21uVn2Un21u2#

2
D f

2
@$Un* ~Vn112Vn21!2Vn* ~Un112Un21!%1c.c.#

1u¹W Unu21u¹W Vnu22 1
2 uUnu42 1

2 uVnu4J dt. ~5!

In terms of the Hamiltonian, Eqs.~3! and ~4! are written as
i ]Un /]z5dH/dUn* , i ]Vn /]z5dH/dVn* . As usual, sta-
tionary equations may then be obtained from the variatio
approach

d~H1l2N0!50,

where N05(n*$uUnu21uVnu2%dt is the number of quanta
andl2 plays the role of Lagrange multiplier. Consequent
soliton solutions

Un
05Vn

05
&l

cosh~lt !
eil2z5g~ t !eil2z ~6!

correspond to a stationary point of the Hamiltonian~5! with
fixed number of quanta. Our goal is to consider the stabi
of the solitary waves~6! in the vicinity of this local extre-
mum.
f
is

-

n

t
f
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To study the effect of the weak linear coupling on stab
ity of the soliton array, I develop the perturbation theory
the vicinity of the threshold of instability. In zero approx
mation, when one can neglect the interaction between ne
bor channels, Eqs.~3! and~4! describe the propagation of th
array of stable one-dimensional solitons~6!. In this system of
noninteracting solitons exists a set of neutrally stable mo
corresponding to infinitesimal variations of soliton form
Moreover, if the linear interaction vanishes, the existence
these modes has no effect on the evolution of the syst
Alternatively, an appearance of the small linear interact
between solitons leads to growth of certain previously n
trally stable perturbations and, as a consequence, to inst
ity of the soliton system in array.

To analyze the stability of soliton solutions~6! with
respect to the small perturbations I perform familiar li
ear stability analysis, where the equations for pertur
tions are derived by linearization of Eqs.~3! and~4! against
the background of noninteracting solitons~6!. Namely, the
solution of the system~3! and ~4! is looked for in the
form Un5@g(t)1(d12 id18)cos(qn)1(d32id38)sin(qn)#eil2z,

Vn5@g(t)1(d22 id28)cos(qn)1(d42id48)sin(qn)#eil2z, where
d i(t,z), d i8(t,z) are amplitudes of periodic perturbation
with a spatial frequencyq. For simplicity everywhere below
it will be assumed that indexi enumerates only the ampli
tudes and changes from 1 to 4. Then, substituting pertur
solutionsUn ,Vn into Eqs.~3! and ~4!, keeping only linear
terms over f , D f I reduce the initial system of evolution
equations to four differential equations of the fourth order
t:

p2d12L̂0L̂1d112~ L̂01L̂1!~2 f d11D f d4sin q

1d2f cosq!50,

p2d22L̂0L̂1d212~ L̂01L̂1!~2 f d22D f d3sin q

1d1f cosq!50,

p2d32L̂0L̂1d312~ L̂01L̂1!~2 f d32D f d2sinq

1d4f cosq!50,

p2d42L̂0L̂1d412~ L̂01L̂1!~2 f d41D f d1sin q

1d3f cosq!50, ~7!

wherez dependence of amplitudes of perturbations was
sumed in the formd i;eipz. Here L̂05l22D tt2g2, L̂1

5L̂022g2 are the well-known self-conjugated operators
the Schro¨dinger type. Thus the problem of linear stability o
the initial system of soliton array is reduced to the determ
nation of the eigenvaluep of the spectral problem~7!.

I suggest looking for the solution of the obtained syste
of differential equations of the fourth order~7! in perturba-
tive manner, viz., expanding the solution in series of a we
coupling coefficient in vicinity of the threshold of instability
To do so, I take out among the linearly noninteracting p
turbations withf 50 andD f 50 the perturbations characte
ized by the eigenvaluep50. These perturbations correspon
to the neutrally stable modes describing infinitesimal var
tions of soliton parameters and can be considered as a
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57 6107INSTABILITY OF SOLITONS IN AN INHOMOGENEOUS . . .
approximation to the correct solution. This idea, forming t
basis of perturbation theory, was put forward in@21# and
successfully realized in the investigation of soliton stabil
in plasma and hydrodynamics@20#. But in continuum media,
as mentioned above, it is impossible to extend the con
quent linear stability analysis to arbitraryq. For the discrete
system, as I am going to show below, the situation is ess
tially different. Really, when coupling constantf is small the
eigenfunctions slightly differ from the neutrally stable mod
for anyq. This circumstance allows one to apply the pert
bation theory for definition of the structure of the spectru
of the weakly coupling continuous-discrete system. Based
these arguments, the eigenfunctionsd i as well as the eigen
value p are expanded in the form of a series over a sm
parameterf !l2 as

d i5(
j 50

`

d i
~ j ! , p25(

j 51

`

~p2!~ j !. ~8!

Then, the substitution of series~8! into Eq. ~7! in zero order
~i.e., for p(0)50, f 50, D f 50! leads to

L̂0L̂1d i
~0!50. ~9!

In this case the solution~6! describes the array of noninte
acting solitons of the Schro¨dinger type. Generally speaking
each temporal solitary wave in array~6! is characterized by
four parameters—initial phase, velocity, amplitude, and i
tial value of retarded time. As usual, the neutrally sta
mode is defined by the difference between the stationary
lutions with adjacent parameters. Hence, differentiating
stationary solution~6! with respect to the soliton parameter
one can directly obtain the following system of even and o
functions@20#:

a152
]g

]l2 , a25&
]g

]t
, ~10!

b252
tg

&
, b15g. ~11!

Alternatively, integrating Eq.~9! one may easily verify tha
solutions satisfying boundary conditiond i

(0)→0 as t→6`
can be represented in the form of linear combinations of
neutrally stable modes~10!

d i
~0!5Ci

1a11Ci
2a2, ~12!

whereCi
1 ,Ci

2 are arbitrary constants. As will be clear fro
further consideration, in the presence of weak interaction
odd and even parts of eigenfunctionsd i correspond to (p2)2

and (p2)1 branches of the eigenvalue problem~7!, respec-
tively.

In this paper the stability analysis is restricted with acc
racy up to the first order of perturbation theory. To rece
the equations of the first approximation, it is necessary
substitute the series~8! into Eq. ~7! and keep only the term
of the first order overf ,D f . It is evident that the solvability
criterion of the obtained eigenvalue problem for the ev
branch of the spectrum ‘‘1’’ ~or for odd ‘‘2’’ ! is expressed
as
e-

n-

-

n
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-
e
o-
e

d

e

e

-
e
o

n

^b6uL̂0L̂1ud i
~1!&50, ~13!

where brackets here and below denote the scalar multip
tion. At first I will consider the even branch of the spectru
corresponding to a sign ‘‘1’’ in Eq. ~13!. Substitutingd i

1

from Eq. ~7! into Eq. ~13! and making use of Eq.~12! I
arrive at

C1
1S p2 ^b1ua1&

2^b1ub1&
2 f D1C4

1D f sin q1C2
1 f cosq50,

C2
1S p2 ^b1ua1&

2^b1ub1&
2 f D2C3

1D f sin q1C1
1 f cosq50,

C3
1S p2 ^b1ua1&

2^b1ub1&
2 f D2C2

1D f sin q1C4
1 f cosq50,

C4
1S p2 ^b1ua1&

2^b1ub1&
2 f D1C1

1D f sin q1C3
1 f cosq50,

~14!

where the valuê b1ub1&/^b1ua1&524l2 can easily be
calculated. Thus the approach applied here allows con
sion of a complicated system of differential equations of
fourth order to a trivial system of algebraic identities. Aft
the simple evaluations I get the dispersive relation betw
the wave numberp1 and the perturbed spatial frequencyq,

~p2!1,2
1 58l2f H 216F12S 12

~D f !2

f 2 D sin2 qG1/2J .

~15!

Here indices 1,2 correspond to signs ‘‘1’’ and ‘‘ 2’’ at the
radical, respectively. Equation~15! shows that there are two
unstable even branches of the spectrum and that the so
array is unstable for anyq. The corresponding structure o
normalized growth rateg5p1/lA8 f of the aperiodic insta-
bility ~15! in the first Brillouin zone is displayed in Fig. 1
First, note that for the upper branch of instability in a po
q50 the p2 reaches its maximum negative value (gmax

2

'16f l2), whereas for the lower-lying branch of instabilit

FIG. 1. Normalized growth rate of instabilityg5p1/lA8 f vs
the spatial frequency of perturbationsq in the first Brillouin zone,
whereD f / f 50.3. An arrow on the boundary of the Brillouin zon
at q5p/2 indicates a gap in the spectrum equal toA2D f / f .
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FIG. 2. Distribution of energyuCnu2 in array after propagation distancez with parameters of coupling coefficientf 50.1,D f 50.01. ~a!
z50. ~b! z54. ~c! z56. ~d! z58.
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in this point thep attains to zero. Then the minimum dis
tance between various branches of the spectrum is achi
on the edges of the first Brillouin zone forq56p/2 and is
equal to 4lAD f . If D f tends to zero the gap in a spectru
disappears and Eq.~15! is reduced to the case of the hom
geneous soliton array (p2)15216l2f sin2(q/2) @16#. More-
over, in the limitq→0 ~i.e., in the semidiscrete approxima
tion! the well-known resultp2524l2f q2 may then be
obtained@20#. Analysis of Eq.~15! shows that the mode
considered has a new branch of a spectrum~upper branch in
Fig. 1! which cannot be obtained in the homogeneous li
and which will be termed further as an optical unsta
branch. The even branch of the spectrum corresponding
sign ‘‘1’’ in Eq. ~15!, whenp is proportionallyq for small
q, may then be termed, apparently as an acoustical uns
branch. For smallq it is not difficult to define the ratio of the
amplitudes of perturbations for the optical branch of t
spectrum, namely,d1 /d25d3 /d4521. Obviously, the ap-
pearance of this optical unstable branch of the spectrum
caused by the inhomogeneity of the continuous-discrete
ed

it

a

ble

is
s-

tem considered. Thus the periodic variation of the coupl
coefficient gives rise to an eigenvalue structure with ba
gap.

Repeating the above described procedure for the
branch of a spectrum I get

~p1,2
2 !25

8

3
l2f H 16F12S 12

~D f !2

f 2 D sin2 qG1/2J .

~16!

In Eq. ~16! a value of^a2ua2&/^b2ua2&5 4
3 l2 was evalu-

ated using the form of the soliton solution. Analyzing th
relation ~16! I find that the structure of these two od
branches of the spectrum is similar to the structure of
acoustical and optical branches of a linear lattice with diff
ent masses. At first sight, it may seem paradoxical or at le
surprising, but it is necessary to notice that the symmetry
the coupling coefficient is similar to the symmetry of th
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FIG. 2. ~Continued.!
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linear chain, consisting of particles of two sorts with t
different masses@see Fig. 2~a!#. Continuing this analogy fur-
ther one can easily identify the magnitudesf and D f as a
sum and difference of inverse masses, respectively. An e
cially interesting correspondence may be obtained if it
accepted that the coupling constant is inversely proportio
to a distance between adjacent fibers. In this case the
tance between neighboring fibers can therefore be assoc
with the mass of a particle in the linear lattice and the abo
mentioned correspondence with the linear chain become
pecially clear. The magnitude 2^a2ua2&/^b2ua2& reflects
the nature of the objects considered~i.e., solitons! and plays
in such an analogy the role of a spring constant.

Now, a remark is in order. In the above-described stabi
analysis the perturbed function constitutes an eig
parameter family of amplitudes of periodic perturbations.
a matter of fact, in the system under consideration four s
cial four-parameter substitutions exist. This set of perio
perturbations lets me represent for compactness in the f
of two vectors
e

pe-
is
al
is-
ted
e-
es-

ty
t-
s
e-
ic
rm

dUnS 1
1
1
1
D 5F S 1

1
21
1
D ~d12 id18!cos~qn!1S 1

1
1

21
D

3~d22 id28!sin~qn!G eil2z,

dVnS 1
1
1
1
D 5F S 21

1
1
1
D ~d12 id18!cos~qn!1S 1

21
1
1
D

3~d22 id28!sin~qn!G eil2z,
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6110 57I. RELKE
with the componentsdUn5Un2g(t)eil2z and dVn5Vn

2g(t)eil2z. One easily verifies that these perturbed fun
tions are also solutions of the linearized system of evolut
equations and moreover realize spectra~15! and ~16!.

As was already mentioned above, the represented ana
of stability is valid, of course, providing thatf !l2. Never-
theless, the stability of the initial soliton solution~6! may be
rather crudely estimated for the casef .l2 as well:

p258 f 224@ f 22~D f !2#sin2 q

68 f 2F12S 12
~D f !2

f 2 D sin2 qG1/2

. ~17!

As follows from Eq. ~17! the valuep2 is nonnegative and
therefore the range of instability of soliton oscillations
limited by f ;l2. Hence, for arbitraryf the maximum of the
growth rate is given bygmax'l2, which is of the same orde
as the growth rate of the modulation instability of the mon
chromatic wave.

III. NUMERICAL RESULTS

The stability of the weak coupling continuous-discre
system~3! and ~4! was checked numerically as well. In th
preceding section Eq.~15! showed that the soliton solutio
~6! is unstable with respect to small periodic perturbatio
In numerical simulations for a nonlinear array of 16 fibe
the split-step method was used, where the linear coup
term as well as the nonlinear term were calculated exac
while the linear dispersive term was evaluated with a fa
Fourier-transform algorithm with up to 128 temporal gr
points. In numerical calculations both the absorbent and
riodic boundary conditions were examined. In a weak c
pling approximation the evolution of the soliton syste
weakly depends on the type of boundary conditions. So
Figs. 2~a!–2~d! the numerical results only for periodi
boundary conditions are presented. Previously presented
oretical analysis shows that the perturbations with a sm
spatial frequency, corresponding to the optical unsta
mode, are most unstable, so that for numerical simu
tions the initial conditions@see Fig. 2~a!# were taken in
the form Cn(0,t)5&mn /cosh(mnt), where mn512
(21)ne sin(pn/16) with the amplitude of perturbationse
50.01. On an axisr is shown the locationr n of thenth fiber
in the array determined by relationsr 15r initial , r n5r n21
1r 01(21)nDr for n52,...,16, where everyr n is scaled to
r 1651 and the distances between neighbor fibersr 02Dr and
r 01Dr correspond to the interactionsf 1D f and f 2D f ,
respectively. The oscillatingD f and constantf parts of the
coupling parameter have been varied in wide limits with
from 0.001 to 0.1. In Figs. 2~a!–2~d! are displayed the result
for D f 50.01 andD f 50.1, as an example.

Numerical calculations show that in the process of soli
evolution a few stages may be chosen. The first stag
characterized by growth of initial modulations@see Fig.
2~b!#. As could be anticipated, the even unstable opti
mode provokes a bunching of initial soliton array in the li
early inhomogeneous continuous-discrete system under
sideration@15,20#. Because of the smallness of the discre
dispersion in the process of creation of one new locali
-
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entity, only a small part of the energy of the soliton array
involved. Really, in this scenario the period of the structu
obtained~i.e., the distance between localized states conta
ing a considerable amount of energy! is increased only twice,
in contrast with the initial state. At the end of this stage t
energy almost completely concentrates in solitons with la
amplitudes. On the next stage are observed the oscillation
the energy between localized states obtained with big spi
Some snapshots of this stage are sketched in Figs. 2~c! and
2~d!. Numerical simulations show also that for small pe
turbed frequency the growth rate of instability practica
does not depend onD f in accordance with the analytica
results ~15!. It should be noted that the magnitude of th
coupling constantf plays the pivotal role in the evolution o
the inhomogeneous continuous-discrete system conside
My computer simulations show also that with decrease of
distance between fibers the number of spikes, contain
most of the energy, is decreased as well, so that forf ;1
almost all of the energy of the array is contained in one o
few fibers, but that is beyond the goals of this paper.

IV. CONCLUSIONS

In conclusion, linear stability analysis of the array of so
tons in the linearly inhomogeneous continuous-discrete n
linear system was performed by means of the perturba
theory presented here. The approach applied here allo
me to obtain in a perturbative manner the solution of
system of linearized evolution equations containing differe
tial operators of the fourth order. The smallness of inter
tion between solitons has provided, in the vicinity of th
threshold of instability, the possibility to seek eigenvalu
and eigenfunctions of the corresponding spectral problem
an expansion over a small interaction coefficient. In t
model under consideration inhomogeneity was initiated
periodic change of the coupling strength. The effect of
coupling strength variation may be seen as the opening
gap in the eigenvalue spectrum. Analysis of eigenva
structure near the threshold of instability shows that the sp
trum of perturbations of the soliton array in linear appro
mation over coupling coefficient is similar to the spectrum
acoustical and optical oscillations of a linear discrete cha
But in an inhomogeneous fiber array, in addition to o
stable modes, slightly unstable even modes exist, which w
referred to above as optical and acoustical slightly unsta
modes in analogy with oscillations of a one-dimensional l
tice. The discovered optical unstable mode ensures insta
ity of the soliton array in the model considered and vanis
completely in the homogeneous limit whenD f 50. Numeri-
cal calculations have demonstrated the development
modulation instability of an inhomogeneous fiber array
different boundary conditions. The analytical method p
sented can be extended for linear stability analysis of ot
configurations of soliton arrays in different models of fib
arrays that will be presented elsewhere.
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