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Instability of solitons in an inhomogeneous array of optical fibers

I. Relke*
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(Received 8 August 1997

The perturbation theory for an investigation of the stability of solitons in fiber array with a periodic change
of a coupling constant is developed. The linear stability analysis is performed in an approximation of weak
coupling within the framework of the system of dispersive discrete nonlinear @olger equations. It is
shown that the propagation of a soliton array in such a continuous-discrete system is unstable. The maximum
of the growth rate of modulation instability is evaluated. Analyzing the mode structure of the corresponding
eigenvalue problem in the vicinity of the threshold of instability it is found that in the system under consid-
eration acoustical and optical unstable modes exist. Numerical calculations confirm the analytical results.
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[. INTRODUCTION on evolution of the solitary waves in the dispersionless fiber
array was considered iii7-19.

Recently nonlinear fiber arrays and nonlinear waveguides In the present paper the stability of temporal solitons is
have attracted a lot of attention in optics due to their possiblstudied in nonlinear fiber array including both dispersive
applications in all-optical signal processifi-5]. Moreover  properties of cores and inhomogeneity of the coupling
they provide an excellent opportunity for theoretical investi-strength. The change of the latter is caused by the periodic
gation of the nonlinear behavior of the discrete system. Anvariation of linear coupling across the fiber array. The cou-
other distinctive feature of these arrays is that they combingling coefficient can be modified, for example, by alteration
the properties of both discrete and continuous systems. Faf the separation between neighbor fibers. | examine in detail
description of the pulse propagation in such systems the nonkhe array with an alternating variable part of the coupling
linear discrete Schrbinger equation is usually used. Unfor- coefficient from fiber to fiber. In practical applications the
tunately this equation is not an integrable one, but it hashange of coupling coefficient can be done, for instance, by
soliton solutions realizing local extremum of the Hamil- means of acoustical modulation of the distance between fi-
tonian. Such steady state solutions, corresponding to statioiers.
ary points of the Hamiltonian, play an important role in sys- The main objective of the present paper is a systematic
tem evolution. In general, in the search for the stationarylinear stability analysis of the soliton array propagating in a
localized solutions of nonlinear systems, inspection of theitinearly inhomogeneous continuous-discrete system. | dem-
stability with respect to small perturbations is one of theonstrate for the case of the set of two discrete dispersive
fundamental problems of nonlinear physics. The detection ofionlinear Schrdinger equations how weak coupling be-
the soliton solutions, in turn, stimulates the development otween neighbor channels changes the stability of the soliton
powerful analytical and numerical methods through the exarray. The approach presented here was applied before
amination of their stability. For the last several years, themainly to continuum modelg¢see, e.g.[20], and references
evolution of localized and continuous wave solutions in thetherein. Unfortunately, as was specified by the authors of
dispersionless nonlinear discrete systems has been studigzD], the linear stability analysis of solitons in continuous
intensively in many workgsee, for example[6—10, and media can be executed only in a limit of small spatial fre-
references therejn But especially great interest is aroused quency. For the continuous-discrete model considered here
by the investigations of the stability of the solitary waves inthe situation sharply varies. Below it will be shown that the
so-called continuous-discrete nonlinear systems where botimalysis of stability of solitary wave solutions can be per-
the temporal dispersion and the discreteness are taken informed in an approximation of weak coupling with arbitrary
account{11-15, because in this problem one may simulta- spatial frequency of perturbations, that ensures the execution
neously investigate both the redistribution of the energyof the complete linear stability analysis of the homogeneous
among the fibers and the evolution of the shape of the localand inhomogeneous continuous-discrete systems within the
ized solution in each core. It was done in a pioneering worlframework of perturbation theory. Inspection of the eigen-
[15] where the modulation instability of soliton solutions in a value problem in a perturbative manner allows one to obtain
homogeneous nonlinear fiber array was studied and, in pathe spectrum of the soliton array perturbations. Analyzing
ticular, the threshold of this instability was evaluated. Morethe mode structure of the linearized system of differential
recently, the stability of solitons, the phase of which rotatesequations of the fourth order | find that in the system con-
across homogeneous fiber array, was investigatedl sidered two odd stable and two even slightly unstable modes
The influence of the inhomogeneity of the coupling strengthexist. Modes corresponding to even branches of the spectrum

will be termed optical and acoustical unstable modes. The
discovered optical unstable mode is responsible for the pro-
*FAX: +49 3641 636782. Electronic address: ingo@pinet.uni-cess of modulation instability in the model of the soliton
jena.de array under consideration.
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Il. PERTURBATION THEORY To study the effect of the weak linear coupling on stabil-
The evolution of pulses in an inhomogeneous array 0tty of_the_ soliton array, | develo.p the _perturbation theory .in
. X 2 “the vicinity of the threshold of instability. In zero approxi-
?nation, when one can neglect the interaction between neigh-
bor channels, Eq$3) and(4) describe the propagation of the
19,0+ Cps 10V i1+ Coo 10 1+ 0¥ ot | V|29, =0, array of sta_ble one_-dimen_sional solitdi@s. In this system of
noninteracting solitons exists a set of neutrally stable modes
n=12...N (1)  corresponding to infinitesimal variations of soliton form.
Moreover, if the linear interaction vanishes, the existence of
whereC,,, 1, is the strength of coupling between fibers num-these modes has no effect on the evolution of the system.
bern andn+ 1, ¥, is the complex amplitude in thath core,  Alternatively, an appearance of the small linear interaction
t is the normalized retarded time, aamdis the normalized between solitons leads to growth of certain previously neu-
propagation distance. In what follows | restrict myself to thetrally stable perturbations and, as a consequence, to instabil-

consideration of the periodic change of coupling strength irity of the soliton system in array.
the form To analyze the stability of soliton solution&) with

respect to the small perturbations | perform familiar lin-
Chr1o=TFT+Af cogmn), (2)  ear stability analysis, where the equations for perturba-
tions are derived by linearization of Eq8) and(4) against
where parameters andAf mean constant and variable part {he background of noninteracting solitof&). Namely, the
:Jf th:cs co?pling fcoeffic[i)elngp resg;ctiiygly- Now g;aking a solution of the system(3) and (4) is looked for in the
ransformation of variablegV,— W e'(~*n+127*n-12% gn _ Y e N2z
taking into account that the value of the coupling coefﬁcientfo m Un [g(t).+(,51 |51)cos(:|n)'+(5? |53)s!£12(zqn)]e' '
varies only with an interchange of parity of the number ofvn=[g(t)?t(52—|52)cosgp)+(54—|ﬂ)sm.(qn.)]e' » Where
fibers | rewrite Eq.(1) introducing the change of variables 4i(t,2), &i(t,z) are amplitudes of periodic perturbations
v,=U,, forn=2i and¥,=V,,, for n=2i—1, with a spatial frequency. For simplicity everywhere below
it will be assumed that indek enumerates only the ampli-
10,Up+AT(Vp1— Vo) +f(Vpp1+Vioo1—2U) + 94U, tudes and changes from 1 to 4. Then, substituting perturbed
) solutionsU,,,V, into Egs.(3) and (4), keeping only linear
+[Un[*Un=0, @  terms overf, Afl reduce the initial system of evolution

. equations to four differential equations of the fourth order on
19,V —=Af(Upi1—Upog) +HH(UpaUpo1—2V) + 04V, t:

+|V,|2V,=0. 4

described by the system of differential equations

p251_ |:0|:161+ 2(I:O+ I:l)( - f 51"’ Af 64S|n q
This system of coupled equations is the Hamiltonian + 8,f cosq)=0,

H=; ”f[|un—vn1|2+|vn—un1|2] p28,—LoL 18,4 2(Lo+ L) (—f8,— AfSssing
+6,f cosq)=0,

Af
— S U (Vos1— Va1 = VA (Ups 1= Up_)l+c.cl . . .
> [{UR (Vhr1=Vi-1) = Vi (Up1—Upog)}+ccl 0283 Lol 183+ 2(Lo+ L) (— 85— Af8,sing

H[TUL 2+ [FVA[2- 3UL = 3V, . ® ot €0sQ)=0,
p28,—Lol18,+2(Lo+Ly)(—f8,+AfS;sing
In terms of the Hamiltonian, Eq$3) and(4) are written as
ioU,ldz=SHIS8UY | 10V,/dz=SHISV] . As usual, sta-
tionary equations may then be obtained from the variation
approach

+ 85f cosq)=0, (7)

a\klherez dependence of amplitudes of perturbations was as-
sumed in the forms~eP% Here Lo=N?—Ay—0? L,
S(H+X\%Ng)=0, = L0—292 are the well-known self-conjugated operators of
the Schrdinger type. Thus the problem of linear stability of
where Ng==,/{|U,|?+|V,|?}dt is the number of quanta the initial system of soliton array is reduced to the determi-
and\? plays the role of Lagrange multiplier. Consequently, nation of the eigenvalup of the spectral problen(i).

soliton solutions | suggest looking for the solution of the obtained system
of differential equations of the fourth ordér) in perturba-
o o V2N N2z N2 tive manner, viz., expanding the solution in series of a weak
Un=Vo=Gostinpy &~ 9(be ®  coupling coefficient in vicinity of the threshold of instability.

To do so, | take out among the linearly noninteracting per-
correspond to a stationary point of the Hamiltoni@nwith  turbations withf =0 andAf=0 the perturbations character-
fixed number of quanta. Our goal is to consider the stabilityized by the eigenvalup=0. These perturbations correspond
of the solitary waveg6) in the vicinity of this local extre- to the neutrally stable modes describing infinitesimal varia-
mum. tions of soliton parameters and can be considered as a zero
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approximation to the correct solution. This idea, forming the 15 o7

basis of perturbation theory, was put forward [®l] and /\
successfully realized in the investigation of soliton stability 1

in plasma and hydrodynami¢20]. But in continuum media, |

as mentioned above, it is impossible to extend the conse- 1

guent linear stability analysis to arbitragy For the discrete

system, as | am going to show below, the situation is essen-
tially different. Really, when coupling constahis small the _
eigenfunctions slightly differ from the neutrally stable modes 0.5
for anyq. This circumstance allows one to apply the pertur-
bation theory for definition of the structure of the spectrum |
of the weakly coupling continuous-discrete system. Based on . a
these arguments, the eigenfunctiahsas well as the eigen- — ——
value p are expanded in the form of a series over a small -Z -1 ° t
parametef <\ as :

(SN

- " FIG. 1. Normalized growth rate of instability=p*/\ 8f vs
= (1) 2_ 2\(j) the spatial frequency of perturbatiogsin the first Brillouin zone,
o jgo 6§ » P 121 (P ®) whereAf/f=0.3. An arrow on the boundary of the Brillouin zone
at g= /2 indicates a gap in the spectrum equal@Af/f.
Then, the substitution of seri€8) into Eq.(7) in zero order
i 0) = = = A A
(i.e., forp™®=0, f=0, Af=0) leads to (B*|LoL4| 8y =0, (13

LoL18”=0. (9)  where brackets here and below denote the scalar multiplica-
) . ) i tion. At first | will consider the even branch of the spectrum,
In this case the solutiof6) describes the array of noninter- corresponding to a sign +” in Eq. (13) Substituting&-l
. . ,

acting solitons of the Schdinger type. Generally speaking, from Eq. (7) into Eq. (13) and making use of Eq(12) |
each temporal solitary wave in arr§) is characterized by g ive at

four parameters—initial phase, velocity, amplitude, and ini-

tial value of retarded time. As usual, the neutrally stable [ _ (B*|a™) . _ N
mode is defined by the difference between the stationary so- C1 | P 2(,8+—|,8+>_f +C,Af sing+C; f cosq=0,
lutions with adjacent parameters. Hence, differentiating the
stationary solutior{6) with respect to the soliton parameters, (B*|at)
?ne can d[izrg]ctly obtain the following system of even and odd Cg( p? W_f ) —C3Af sing+C; f cosq=0,
unctions[20]:
+| .+
J J (B"la”) .
a+=—£2, a =v2 (?_?' (10) C;(pzm—f —C, Af sing+C, f cosq=0,
(B"|a™) .
t +[ A2 _ + + —
B,:__g, Bt =g. (11) C4(p —2<,8+|,8+> f |+C{Af sing+C5f cosq=0,
V2 (14

Alternatively, integrating Eq(9) one may easily verify that where the valug8*|8*)/(B8"|a™)=—4\? can easily be
solutions satisfying boundary conditioﬁfo)—>0 ast— =+ o calculated. Thus the approach applied here allows conver-
can be represented in the form of linear combinations of thesion of a complicated system of differential equations of the

neutrally stable modegl0) fourth order to a trivial system of algebraic identities. After
the simple evaluations | get the dispersive relation between

§%=Cfa*+Cia", (12 the wave numbep™ and the perturbed spatial frequerngy

whereC;" ,C; are arbitrary constants. As will be clear from - 5 (Af )2\ vz

further consideration, in the presence of weak interaction the (P9)=8NF) —1%11—{1- T2 Sir? g .

odd and even parts of eigenfunctiofiscorrespond to§?) ~ (15)

and (p?)* branches of the eigenvalue probléif, respec-

tively. Here indices 1,2 correspond to signs-* and “ —" at the

In this paper the stability analysis is restricted with accu-radical, respectively. Equatioil5) shows that there are two
racy up to the first order of perturbation theory. To receiveunstable even branches of the spectrum and that the soliton
the equations of the first approximation, it is necessary t@fray is unstable for ang. The corresponding structure of
substitute the serie@) into Eq.(7) and keep only the terms normalized growth rate/=p*/\ {8f of the aperiodic insta-
of the first order oveff,Af. It is evident that the solvability bility (15) in the first Brillouin zone is displayed in Fig. 1.
criterion of the obtained eigenvalue problem for the everFirst, note that for the upper branch of instability in a point
branch of the spectrum+" (or for odd “—") is expressed =0 the p? reaches its maximum negative valuezﬁqu
as ~16f\2), whereas for the lower-lying branch of instability
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FIG. 2. Distribution of energy¥ ,|? in array after propagation distanzevith parameters of coupling coefficieht=0.1,Af=0.01. (a)
z=0. (b)z=4. (c)z=6. (d)z=8.

in this point thep attains to zero. Then the minimum dis- tem considered. Thus the periodic variation of the coupling
tance between various branches of the spectrum is achievedefficient gives rise to an eigenvalue structure with band
on the edges of the first Brillouin zone fg=*7/2 and is  gap.

equal to A/Af. If Af tends to zero the gap in a spectrum  Repeating the above described procedure for the odd
disappears and E@15) is reduced to the case of the homo- branch of a spectrum | get
geneous soliton arraypf) " = — 16\ 2f sir?(¢/2) [16]. More-

over, in the limitq—0 (i.e., in the semidiscrete approxima-

tion) the well-known resultp?=—4\?fq®> may then be _ 2—§)\2f 1+l1-(1- (Af)? i vz
obtained[20]. Analysis of Eq.(15) shows that the model (P12 3 - fz /s a
considered has a new branch of a specttupper branch in (16)

Fig. 1) which cannot be obtained in the homogeneous limit

and which will be termed further as an optical unstable

branch. The even branch of the spectrum corresponding tola Eq. (16) a value of(a~|a~)/{(8™ |a~)=3\? was evalu-
sign “+" in Eq. (15), whenp is proportionallyqg for small  ated using the form of the soliton solution. Analyzing the
g, may then be termed, apparently as an acoustical unstabtelation (16) | find that the structure of these two odd
branch. For smal it is not difficult to define the ratio of the branches of the spectrum is similar to the structure of the
amplitudes of perturbations for the optical branch of theacoustical and optical branches of a linear lattice with differ-
spectrum, namely$,; /8,= 63/5,=—1. Obviously, the ap- ent masses. At first sight, it may seem paradoxical or at least
pearance of this optical unstable branch of the spectrum isurprising, but it is necessary to notice that the symmetry of
caused by the inhomogeneity of the continuous-discrete syshe coupling coefficient is similar to the symmetry of the
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FIG. 2. (Continued)

linear chain, consisting of particles of two sorts with the

different massefsee Fig. 2a)]. Continuing this analogy fur-
ther one can easily identify the magnitudegand Af as a

sum and difference of inverse masses
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cially interesting correspondence may be obtained

accepted that the coupling constant is inversely proportional

to a distance between adjacent fibers.

tance between neighboring fibers can therefore be associated
with the mass of a particle in the linear lattice and the above-
mentioned correspondence with the linear chain becomes es-
pecially clear. The magnitude(@~|a~ /{8~ |a") reflects

1)cos(qn)+(

1
)(51i5

the nature of the objects considerg&., solitong and plays
Now, a remark is in order. In the above-described stability
analysis the perturbed function constitutes an eight-

in such an analogy the role of a spring constant.

parameter family of amplitudes of periodic perturbations. As
a matter of fact, in the system under consideration four spe-
cial four-parameter substitutions exist. This set of periodic

)sin(qn)] ez,

'
2

X(8,—i8

perturbations lets me represent for compactness in the form

of two vectors
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with the componentssU = Un—g(t)e“ZZ and sv,=V,  entity, only a small part of the energy of the soliton array is
_g(t)ei)\zz One easily verifies that these perturbed fur]C_involved. Really, in this scenario the period of the structure
tions are also solutions of the linearized system of evolutiorf’bta'ned("e" the distance between localized states contain-

equations and moreover realize spe and(16). Ing a conside.rable am_qunt of eneygyincreased olnly twice,
q pectra) (16) Ji3 contrast with the initial state. At the end of this stage the

energy almost completely concentrates in solitons with large

amplitudes. On the next stage are observed the oscillations of
the energy between localized states obtained with big spikes.
Some snapshots of this stage are sketched in Figs.aad

of stability is valid, of course, providing thdt<\2. Never-
theless, the stability of the initial soliton soluti¢®) may be
rather crudely estimated for the cake\? as well:

2_qf2_ ar2_ 21ai 2(d). Numerical simulations show also that for small per-
pi=8fi—a[f*~(Af)sirt turbed frequency the growth rate of instability practically
) (Af)?) vz does not depend oAf in accordance with the analytical

89 1-{1-—0 sir? g (17 results(15). It should be noted that the magnitude of the

coupling constant plays the pivotal role in the evolution of
As follows from Eq.(17) the valuep? is nonnegative and the inhomogeneous continuous-discrete system considered.
therefore the range of instability of soliton oscillations is MY computer simulations show also that with decrease of the
limited by f~\2. Hence, for arbitranf the maximum of the distance between fibers the number of spikes, containing
growth rate is given by, ~\% which is of the same order most of the energy, is decreased as well, so thatf fed

as the growth rate of the modulation instability of the mono-&/most all of the energy of the array is contained in one or a
chromatic wave. few fibers, but that is beyond the goals of this paper.

IIl. NUMERICAL RESULTS IV. CONCLUSIONS

The stability of the weak coupling continuous-discrete
system(3) and (4) was checked numerically as well. In the
preceding section Eq15) showed that the soliton solution

In conclusion, linear stability analysis of the array of soli-
tons in the linearly inhomogeneous continuous-discrete non-

; . N . linear system was performed by means of the perturbation
(6) is unstable with respect to small periodic perturbations y P y P

! . : . : theory presented here. The approach applied here allowed
In numerical simulations for a nonlinear array of 16 flbersme to obtain in a perturbative manner the solution of the
:he spllt-ste;lp m?LhOd WI"?‘S us?d, where thel I'Tetardcoumf[?gystem of linearized evolution equations containing differen-
€rm as well as the noniinear term were caicu'ated exacty;,| operators of the fourth order. The smallness of interac-
while the linear dispersive term was evaluated with a faSt’[ion between solitons has provided, in the vicinity of the

FopTer]transform allgozlthlmt_wnh bught(t)h 12% tembpo:al %r'd threshold of instability, the possibility to seek eigenvalues
points. in numerical caiculations both the absorbent and peg, eigenfunctions of the corresponding spectral problem as
riodic boundary conditions were examined. In a weak cou

" ‘mation th luti £ th lit ¢ ‘an expansion over a small interaction coefficient. In the
pling approximation the evolution of the Soliton SySem y,qqe| ynder consideration inhomogeneity was initiated by

\I/:v_eakly depzegds r?n the type (I)f bour|1dary lconfditions._ qu’ Irberiodic change of the coupling strength. The effect of the
igs. a)-2 )..t e numerical results only for periodic coupling strength variation may be seen as the opening of a
bou_ndary cond_mons are presented. Prewogsly prgsented th ap in the eigenvalue spectrum. Analysis of eigenvalue
oretical analysis shows that the perturbations with a smal tructure near the threshold of instability shows that the spec-

spatial frequency, corresponding to the optical unStabI‘?rum of perturbations of the soliton array in linear approxi-

r_node, are most uns_t_able, SO that for numerical SImUIa'mation over coupling coefficient is similar to the spectrum of
tions the initial conditions[see Fig. Pa)] were taken in

acoustical and optical oscillations of a linear discrete chain.
the :orm Wn(08)=v2u,/coshuil), where w,=1— " gt in an inhomogeneous fiber array, in addition to odd
(—1)"€ sin(zn/16) with the amplitude of perturbations o110 modes. slightly unstable even modes exist, which were
=0.01. On an axis is shown the location, of thenth fiber  oterreq to above as optical and acoustical slightly unstable
in the array determined by relation§=ringai, 'n=rn-1  modes in analogy with oscillations of a one-dimensional lat-
+rot+(—1)"Ar for n=2,..,,16, where every, is scaled 10 (ice The discovered optical unstable mode ensures instabil-
r16= 1 and the distances between neighbor fibgrsAr and ity of the soliton array in the model considered and vanishes
ro+Ar correspond to the interactiorfst Af and f—Af,  completely in the homogeneous limit whewf = 0. Numeri-
respectively. The oscillating f and constant parts of the 5| calculations have demonstrated the development of
coupling parameter have been varied in wide limits withinyoqylation instability of an inhomogeneous fiber array for
from 0.001 to 0.1. In Figs.(&)-2(d) are displayed the results gfferent boundary conditions. The analytical method pre-
for Af=0.01 andAf=0.1, as an example. sented can be extended for linear stability analysis of other

Numerical calculations show that in the process of solitorygnfigurations of soliton arrays in different models of fiber
evolution a few stages may be chosen. The first stage i§rrays that will be presented elsewhere.

characterized by growth of initial modulatiorisee Fig.

2(b)]. As could be anticipated, the even unstable optical

mode_ provokes a bunchlng of |n|t|a! soliton array in the lin- ACKNOWLEDGMENT

early inhomogeneous continuous-discrete system under con-
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